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The method of multiple scales is used to derive equations governing the temporal 
and spatial variation of the amplitudes and phases of inviscid capillary-gravity 
travelling waves in the case of second-harmonic resonance (Wilton’s ripples), 
but including the effects of: (i) near resonance, (ii) liquid depth, and (iii) pressure 
perturbations exerted by an external subsonic gas on the liquid/gas interface. 
The spatial form of the equations shows that, below a critical gas velocity, energy 
is transferred between the fundamental and its first harmonic in keeping with 
the energy conservation law. However, the amplitude of the first harmonic de- 
creases with increasing gas velocity. Above the critical gas velocity, the dis- 
placement of the gas/liquid interface grows monotonically with distance. It is 
found that pure amplitude-modulated waves are possible only at perfect reson- 
ance. Pure phase-modulated, near-resonant waves are periodic, as the resonance 
forces a readjustment of the phases t o  produce perfect resonance. The effective- 
ness of the resonance in rippling the interface increases as the liquid depth 
decreases. 

1. Introduction 
In  this paper, we consider the second-harmonic resonance in the interaction 

of capillary and gravity waves on the interface of an inviscid liquid layer of 
finite depth and a gas flowing uniformly parallel to the interface. The condition of 
nth-harmonic resonance occurs when both the fundamental and its nth harmonic 
propagate in the same direction with identical phase speeds. 

In  the absence of an external gas and for a deep liquid, harmonic resonance 
occurs at the denumerable set of wavenumbers &, = (pg/nT)+, n 2 2,  where T is 
the surface tension, p is the density of the liquid and g is the acceleration due to 
gravity. The second-harmonic resonance wavenumber i2 corresponds to a wave- 
length of 2.44 em in deep water (Wilton 1915), while the third-harmonic resonance 
wavenumber I& corresponds to a wavelength of 2.99cm in deep water. At k,, 
Wilton found that two finite amplitude permanent periodic waves could exist; 
one is a gravity-like wave in which the phase speed decreases with amplitude, 
while the second is a capillary-like wave in which the phase speed decreases with 
amplitude. Pierson & Fife (1961) extended the results of Wilton to wavenumbers 
near i2, while Schooley (1960) observed double-dimpled wave profiles. Barakat & 
Houston (1968) extended the analysis of Pierson & Fife to the case of a finite 
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depth liquid while Nayfeh ( 1 9 7 0 ~ )  extended the results of Barkat & Houston to 
second order. At or near E,, Nayfeh (1970b) found that, to third order, three 
finite amplitude periodic waves could exist: one is gravity-like while the others 
are capillary-like. 

At I,, Simmons (1969) derived equations governing the temporal and spatial 
variation of the amplitudes and phases of the fundamental and its first harmonic 
by averaging the Lagrangian for the case of a deep liquid. Prom a one-dimensional 
form of these equations, Simmons found that pure amplitude-modulated waves 
could exist. These waves were confirmed experimentally by McGoldrick (19704 .  
McGoldrick (1970b) rederived the equations of Simmons, using the method of 
multiple scales, and found that the general motion consists of both amplitude- 
and phase-modulated waves. Moreover, he found that the periodic waves of 
Wilton and the pure amplitude-modulated waves of Simmons exist for very 
special initial conditions only. 

At or near k,, Nayfeh (1971) derived equations governing the temporal and 
spatial variation of the amplitudes and phases of the fundamental and its second 
harmonic for the case of deep water. The results show that pure amplitude- 
modulated waves do not exist in this case, while pure phase-modulated waves are 
unstable. 

Kim & Hanratty (1971) and McGoldrick (1972) presented experimental results 
on harmonic resonances. Kim & Hanratty observed the creation of third-, fourth- 
and eighth-harmonic distortions in shallow water. They interpreted these 
observations by using a quadratic interaction model consisting of four modes. 
McGoldrick determined experimentally the effect of near resonance for third-, 
fourth- and sixth-harmonic resonance in deep water. 

The purpose of this paper is to analyse the effect of a subsonic air stream on 
rippling of the surface of an adjacent liquid of finite depth near the second- 
harmonic resonance conditions. 

2. Problem formulation 
In  this paper we consider the flow configuration analysed by Nayfeh & Saric 

(1971). The liquid is assumed to be inviscid, and to have a finite depth, but to be 
otherwise unlimited. One face of the liquid is assumed to be adjacent to an 
inviscid subsonic gas of density p, flowing with a uniform velocity U, parallel 
to the undisturbed liquidlgas interface. The density of the gas is assumed to be 
very small compared with the liquid density so that the gas body force can be 
neglected. Moreover, the phase velocity is assumed to be small (of the order of 
20 cm/s) compared with the gas velocity (of the order of mls) so that the transient 
motion of the gas can be neglected. The motion is limited to two dimensions, and 
it is assumed to be represented by potential functions. 

A Cartesian co-ordinate system is introduced such that the x axis lies in the 
plane of the undisturbed liquid/gas interface, and the y axis normal to this 
interface and directed from the liquid to the gas. Distances and time are made 
dimensionless using the wavenumber k, = (pg/T)*  and the time (gk,)-*, where g 
is the acceleration due to gravity and T is the surface tension of the liquid. The 
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dimensional potential functions representing the oscillations of the liquid and the 
gas are taken to be 

where the dimensionless functions $ and @ satisfy 

and 

g%Q$(x, Y ,  t ) ,  q x +  @.(X,Y,t)l/lc,, 

V2$ = 0, -h  6 y < 7, (1) 

QVU + m2QzX = M2[+(y - 1) (2Qz + @: + @:) (@,, + @,,) + (2Qz + 0:) Qzz 

+2(1+@D,)@~@z,+@:@,,l (7 6 Y < m), (2) 

for -co < x < co, where F, is the depth of the liquid layer, r ( x ,  t )  is the elevation 
of the wave above the undisturbed interface, M is the gas Mach number, y is 
the specific heat ratio of the gas and m2 = 1 - M2.  

At the solid/liquid interface, the normal velocity vanishes, that is, 

$&, -h,t) = 0, (3) 

and away from the gas/liquid interface, the vertical component of the gas velocity 
vanishes, that is, 

QU(X, 00, t )  = 0. (4) 

At the liquidlgas interface, the normal components of the gas and the liquid 
velocities are equal to each other and to the normal velocity of the interface itself; 
that is 

Moreover, the balance of normal forces on this interface gives 

r-$t+Q($$+@) = ?l,(l+r$)-~-gmxc, at ?/ = r ,  (7) 

where +mxC, is the dimensionless pressure perturbation exerted by the gas on 
the interface owing to the appearance of waves on the interface. Here, 

x = Ps w & l m P s  

c, = (2/7M2) {[1 - +(y- 1) M2(2@, + @$ + @;)]y/(y-l)- I] 

is the ratio of the gas pressure perturbation to the body force, and 

the pressure perturbation coefficient. In  this model, the gas motion is energetically 
coupled with the liquid motion via the term +mxC,, and the coupling disappears 
when x .+ 0. 

To determine an approximate solution to (1)-(7) for small e (the maximum 
slope of the wave), we use the method of multiple scales (Nayfeh 1973, chapter 6) 
and introduce the temporal scales 

To = t ,  TI = Ct 
and the spatial scales x, = x, x, =ex. 
Thus, the derivatives are transformed according to 

a a a  a 
-+€-. 

a a  
a t - a ~ , + ' a ~ , '  Z a x ,  ax, _ -  
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Moreoever, we assume that 

Since the boundary conditions (3) and (4) are linear, each & satisfies (3), while 
each an satisfies (4). 

On substituting the expansions (8)-(10) into (1)-(7) and equating the co- 
efficients of like powers of E ,  we get to order 8 

3. Expansions 

written as 
The sinusoidal, travelling wave solution of the fist-order problem can be 

(17a) 

(17 b )  

(17c) 

ql = A(X, ,  Tl) exp (29) +&Xl, T,) exp ( - ie), 
4, = iw[A exp (ie) - 2 exp ( - i B ) ]  cosh [k(y + h)] /k  sinh kh, 

= - ( i /m)  [A  exp (ie) - Aexp ( - ie)] exp ( - mky), 
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where 2 is the complex conjugate of A,  0 = kXo-wTo and w satisfies the dis- 
persion relationship 

w2 = k(k2 - k~ + I )  tanh kh. 

Thus, the interface of the two fluids is stable or unstable according to whether 
w is real or complex. If x 6 2,  w is real for all values of k and the interface is 
stable. On the other hand, if x > 2,  w is complex for kc, < k < k,, and real for 
I% 3 k,, and k < k,,, where 

k,,, kc2 = 0.531 ( 0 . 2 5 ~ ~  - I)*, 

the so-called cut-off wavenumbers separating stability from instability. These 
are the results of the linear Kelvin-Helmholtz instability problem (Chang & 
Russell 1965). In  this paper, we assume that w2 is positive definite (i.e. x < 2,  
or k,, < k < kc, if x 3 2 )  so that equations (17) represent a uniform travelling 
wave train. 

Harmonic resonance will occur for all wavenumbers k such that both (k, w )  
and (nk, nu) for some integer n 2 2 satisfy the above dispersion relationship. The 
first resonant wavenumber k, corresponds to n = 2 and is the solution of 

(18) 

The resonant wavenumber k, is a function of both the liquid depth h and the 
ratio x of the gas pressure perturbation to the gravitational force. As h -+ co, 
k'j -+ + for all x. If x = 3 x 2-$, k2, = 4 for all h. For small h, k, = &x. Note that, 
as h --f 0, the waves are weakly dispersive; that is, all waves have approximately 
the same phase speed. The variation of k, with2 and h was calculated by Nayfeh & 
Saric (1971) and is shown in figure 1. In order that the configuration be stable 
according to the linear theory, both of the bracketed expressions in (18) must be 
positive. This condition restricts the values of x to those less than xc = 3 x 2-9 
because kc, < k, and 2k, < kc2 (i.e. an unstable configuration) if x > x,, and 
k, = kcl = 0.5kc2 (i.e. w = 0 )  if x = xc. To determine the resonant interaction 
a t  or near k,, we let 

(4k2,- 2k,x + I )  tanh 2k,h = 2(k2, - k,x + 1) tanhk,h. 

where C.C. stands for the complex conjugate and 

6, = k n X o - ~ n T o ,  u%= kn(k;-knx+ l)/Cn, 
C, = cothk,h, k, z 2 4 ,  w2 z 2 ~ , .  

Substituting for yl, $, and 0, from (19)-(21) into (12)-(16), we get 



808 A. H .  Nayfeh 

0 1.0 2.0 3.0 4.0 5.0 6.0 

Liquid depth,h 

FIGURE 1. Variation of second-harmonic resonant wavenumber k ,  = kl/k, With liquid 
depth h = &k, and x = pB Utk,/pg(l -MZ)b, the ratio of pressure perturbation exerted 
by the gas to body force. k,  = ( p g / T ) + ,  p is the density, T is the surface tension, g is the 
acceleration due to gravity, M is the Mach number, the subscript g refers to the gas and 
a tilde denotes a dimensional quantity. 

+ i ( y  + 1) k3, M2m-2A2, exp (2i8, - 2mk,y) + ik,k,(k, - k,) M2 

x [(y + 1) m-, - y  + 31 A2B,exp [i(& - 0,) -m(k,+ k,) y] + C.C. +NST, (23) 
872 a4 2 aA - + -, = - x -n exp (id,) - 2i0, k,C, A2, exp (Zid,) - i( k, - k,) aT, ay n = l  aTl 

x (w,C,+w2C2)A2B,expi (d , -8 , )+c .c .+NST at y = 0, (24) 

av, do2 = - 
2 aAn - exp (ion) - i(m + m-l) lc2,A; exp (ZiO,) - im(k; - k;) ax, ay n=l ax, 

x A 2 ~ , e x p i ( 0 , - ~ , ) + c . c . + N S T  at y = 0, (25) 

aA + (2k, - x) 2 ] exp ( i e n )  
8x1 

+ [&2,(3 - C2,) - mk2,~]  A2,exp (ZiS,) + [$+ ui - wlw2( i  +C1C2) 

where NST stands for terms which do not produce secular terms. 

- mX( k, - I c , ) ~ ]  A2A1 exp i(0, - 8,) + C.C. + NST at y = 0, (26) 

Since 20, = e2-r, o,-B, = o,+r, 
r = (k2 - 2k,) x, - (w2 - 20,) T,, where 
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the terms proportional to exp [ & (2i0,)l and exp [ & i(0, - el)] are to within r 
resonant forcing functions. If we suppose a near-resonant tuning when k, - 2k1 
and w, - 2w, are of O(s), then I? becomes slowly varying on the same scales as 
A ,  and A,. To exhibit this slow variation, we express I’ as 

k, - 2k, w2 - 2w, Tl r=- x,-- . 
€ € 

Consequently, additional secularities arise from the exp ( f 2 i 4 )  and 

exp ( -I i[0, - 0,l) 

terms. However, they can be balanced by proper choices of the functions 

To determine the conditions which must be satisfied for there to be no secular 
4 (Xl, Tl). 

terms, we take the secular-free particular solution of (22)-(26) to be 

- $i(r + 1) 1%; M4m-3yA2, exp (2i6, - 2mk, y )  

+ $iM2rn-2 ( k z - k l )  [ (y+ l )m-2-y+3]&B, 

exp [i(B, - 0,) -m(kl + k,) y]  + C.C. (29) 

Equations (28) and (29) satisfy (22) and (23) and the boundary conditions (3) 
and (4). Since this particular solution is free of secular terms, it is attainable if 
certain conditions are satisfied. These are the conditions for the elimination of 
secular terms. 

Substituting this particular solution into (24)-(26) and equating the co- 
efficients of exp (ie,) on both sides, we get two sets of three algebraic inhomo- 
geneous equations for the determination of 4, G, and Hi for i = 1 and 2. The 
determinants of both sets are zero because w! = k,(kt - kix  + l)/Ci. Consequently, 
these algebraic equations are solvable if and only if the inhomogeneous part of 
each set is orthogonal to the solution of the homogeneous adjoint equations. This 
condition is equivalent to letting, say, F, = F, = 0 and eliminating the G’s and 
H’s from the six algebraic equations. In  either case, we get the following equations 
as conditions for the elimination of secular terms: 

aAl/aTl+w;iM,/~xl = iJIBIA,exp (ir), (30) 
aA,/aT, + w; aA,/BXl = iJ,A’$exp ( - ir) (31)s 

where w; = dw@, are the group velocities, Ji = JC;121-i and 

J = k1w~1[8(3-C2,-44C1Cz)02,+m-lk2,~fa(~+ 1) M4m-3k2,~]. (32) 

In  (32), we replaced k2 by 2k1 and 0, by 20, with an error of O(s). The complex 
conjugate counterparts of (30) and (31) do not add anything new. 



810 A. H .  Nccyfeh 

In  the case of no external air flow (i.e. x = 0), 

J = Qk1w1(3 - C2, - 4C1C2), W: = k,(lc: + I)/@.. 

If we also assume that lc, = 21c1 and aA,/aXl = 0,  equations (30) and (31) 
correspond to equations (8) of Kim & Hanratty (1971) with A, = A, = 0 except 
for a missing minus sign in the first of their equations (8). Note that their L, 
corresponds to the present I?. Their equations (32) remove the limitation 
8A,/aX, = 0. Note that, as McGoldrick (1972) remarked, the validity of cqua- 
tions (8) of Kim & Hanratty is limited to the case in which each L, is small, 
which is equivalent to k, = nlc, and w, x nu, for n = 1 , 2 , 3  and 4. Thus, this 
assumption limits the validity of their equations (8) to shallow water; but then, 
omission of the higher harmonics is not justifiable because all harmonics have 
approximately the same phase speed. 

I f  we let A ,  = $a,exp (ib,) with a, and p, real and slowly varying in (30) 
and (31) and separate real and imaginary parts, we get 

aa,/aTl + w; aa,/aX, = - $Jlala2 sin a, 
aa,/aT1 + wB aa,/aX, = &J2a2, sin a, 

ap1/aTl + W ;  a/31/aXl = $J1a, cos a, 

a,(ap,/aT, + w;, ap,/aX,) = &J2a2, cos a, 

(33) 

(34) 

(35) 

(36) 

where 
k,  - 2k, xl - w2 - 2w 

a = p2-2p1+- Tl. 
6 € 

(37) 

If we let (i) h -+ co (i.e. infinite depth), (ii) W ,  = 2w, and k ,  = 2k1 (i.e. perfect 
resonance) so that I? = 0, and (iii) x E 0 (i.e. no externalgas), equations (33)-(37) 
reduce t o  those of Simmons (1969). 

Note that for some values of x, h and M ,  the interaction parameters J1 and 
J2 vanish. As h -+ co, J1 and J, vanish when 

x = 6 x 2bz3[(y + I )  M4 + 4m2(m + l)]-l, (38) 
which becomes x z 1.06 a t  M = 0. For such cases, (33)-(36) show that, to second 
order, there is no interaction between the fundamental and its &st harmonic. 

Since there is no general solution yet available for (33)-(37) subject to general 
initial conditions, we next investigate the spatial variation of the amplitudes 
and phases; that is, aa,/aTl = a/3,/aT1 = 0 and w2 = 213,. 

4. Spatial variation of the amplitudes and phases 
I n  this case, (33) and (34) have the integral 

a2, + vai = E,  v = 2C20.$7,w;, (39) 

where E is a constant proportional to the total energy density in the two modes. 
This is simply a statement of the conservation of energy. According to this 
equation, the motion is bounded for all distances if v is positive. If u is negative, 
no conclusion can be drawn from this equation on whether the motion is bounded 
.or unbounded. We shall show below that the motion is unbounded if the de- 
tuning is sufficiently small. 
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For a deep liquid, k2, = 0.5 and kg = 2.0, hence 

v = 2[7 - 2 $ ~ ] / [ 5  - 24x1. 

Thus, v is negative when $24 < x < 224. 

The upper bound must be replaced by 3 x 2-4, the value below which x was 
restricted in $3.  For deep water and at  sea level, v is negative when the wind 
speed U, satisfies the inequality 

6.3m/s < U, < 6.9mls. 

To determine a second integral, we combine (35)-(37) into 

a, da/dXl = era, + (&J,w;-la2, - J1wl-'a2,) cos a, (40) 

a2,a,cosa+ CTW; J,-la; = L if J, + 0, (41) 

where the detuning CT = (k, - 2k,)/e. From (34)) (39) and (40)) we get the integral 

where L is another constant of integration. Using these integrals, we rewrite 
(33) as 

- [),I =a([), 6 = aVE. (42) 

The stability of the interface depends on the number of real roots of the algebraic 
cubic equation G(6) = 0. If  a([) has only one real root, the displacement of 
interface becomes unbounded with increasing distance. On the other hand, if 
a([) has three real roots, the interface is bounded and oscillates periodically 
between the two positive roots between which G(6) is positive. In  this case, [ can 
be expressed in terms of Jacobi elliptic functions. 

For the particular initial conditions 

a2,=E, a,=O at x = X l = O  (43) 

equation (41) leads to L = 0. Hence, (42) can be rewritten as 

where 

Since [ = 0 at XI = 0,  equation (44) shows that the interface is bounded if 

(1-vg)2-2,U[ = 0 (45) 

(46) 

has positive real roots; this condition is equivalent to 

(p + v)' > v2, 

which is satisfied for all if v > 0 and for p > 21vl if v < 0. Thus, the interface 
is unstable and its displacement grows as the waves travel if the air speed 
U, > 6.3 m/s (i.e. v < 0) and the detuning CT = (k, - 2k,)/e is small enough so that 

u2 < 4IvI EJ:/wi2. 

In  particular, the interface is unstable when v < 0 and CT = 0 (i.e. perfect. 
resonance). 
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0 

2 
FIGURE 2. Effect of air flow on the effectiveness of resonance in rippling 

the interface for M = 0 and h = co. 

If the quadratic equation (45) has real roots, 5 oscillates periodically between 
[ = 0 (owing to the initial condition [ = 0 at x = 0) and the smaller root of (45); 
that is, between = 0 and 

6 = tmax = v -yp  + v - (p2 + 2pv)iI. 

L a x  + (P + ~ 1 - l .  

(47) 

A s p  -+ 00 (i.e. CT --f 00 or J2 -+ 0)) 

The rippling effect of the air on the liquid can be best visualized by plotting 
the maximum attainable dimensionless amplitude ti, = a2 E-4 (Le. tiax) as 
a function of 2 = mx = p9 UZkJpg and the detuning parameter 6 = aE-4. 
Figure 2 shows that the presence of the air stream decreases the effectiveness of 
the resonance mechanism in rippling the interface. It shows that ti2 decreases 
monotonically to zero as 2 increases to 2 x 1.08. As 2 increases further, ti2 first 
increases and then decreases to zero when 2 satisfies p = 21~1. Beyond this 
critical value, (45) has no real roots and the interface is unstable. Note that when 
c = 0 (i.e. perfect resonance) a2 is discontinuous at 2 M 1-06, the value that makes 

Figure 3 shows that for a given 2 there exists a band of frequencies with band- 
width of O ( E )  about the perfect resonance frequency for which G2 is appreciable, 
and the rippling is most effective. However, a2 decreases rapidly as B increases 
as discussed above, in agreement with the conclusion and observations of 
McGoldrick (1972). 

Figure 4 shows that the effectiveness of the resonance in rippling the interface 
increases as the liquid depth decreases, in agreement with the results of Kim & 
Hanratty (1971). For a given a,&, increases as h decreases. Note that the present 
analysis is invalid for very small values of h. 

J1 = J2 = 0. 



Interaction of air streant with capillary-gravity waves 813 

1.0 

I 
Q 
d 
II 

4 
II 
.g 0.5 

0.6 

0.5 

0.4 
Q 
t? 

II 
0.3 *i 

.t? 0.2 

w 
II 

0.1 

A 

- 

- 

L7 

1 I I * 

1 .o 
B 

2.0 

FIGURE 3. Effect of detuning on the effectiveness of resonance 
in rippling the interface for M = 0 and h = co. 
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that is, 
Periodic waves correspond to the stationary solutions of (33), (34) and (40); 

(48) 1 a, = nn with n an integer, 

a,,+QJ2w~-1a~ocosnn- J1w;-la&cosnn = 0. 

Using (48), we rewrite (35) and (36) as 

dP,ldX, = - QJ, w;-l a,, cos nn, 

d,!3,IdX1 = - c + J1w;-I a,, cos nm. 

Consequently, k2 + e @ J d X ,  = 2 (k1 + e dpI/dX,),  
or e, = 20,. 

Hence, the motion in this case is periodic, and the effect of the nonlinearity is to 
adjust the phase speed of the first harmonic to that of the fundamental. The 
dimensional phase speeds of periodic waves are given by 

c = (7)' 2 [i + &(J,/w;k,) a,, cos nn] + O(e2).  
4 

Solving (39) and (48) for a,, and az0, we get 

a 3J, cos nn 2o = 

a,, = & ( E  - vagO)3. J 
To determine the stability of these periodic waves, we let 

(49) 

a, = a,, + Aa, exp (ST,), a, = a,, + Aa, exp (ST,), 
a = nn + Aa exp (ST,). 

Substituting these expressions into (33)) (34) and (40)) using (as), and keeping 
linear terms only, we find that s is pure imaginary. Hence, these periodic waves 
are unstable, in the sense that any small disturbance applied to these periodic 
waves leads to aperiodic waves. 

So far, we have investigated two types of wave motion. The first consists of 
both amplitude- and phase-modulated waves while the second consists of pure 
phase-modulated waves (periodic waves). The question arises as to whether pure 
amplitude-modulated waves are possible. If p, and pz are constants, cosa = 0, 
or a = Q(2n - 1) with n integer according to (35) and (36). Hence, c must vanish 
according to (37). Then, (33) and (34) have the solutions 

a2 = (E/v)t  tanh [ i: +(EJ,J,/w;w$X,+ constant], 

a, = E i  sech [ rt iJ(EJ, J,/w;w;)* X ,  + constant]. (51)  

These equations reduce to those of Simmons (1969) when h --f 00 and x --f 0. 
As x --f co, X, -+ co, a, -+ 0 and a, -+ f (E/v)&, leading to a periodic wave inde- 
pendent of the fundamental. It can be shown that these waves are unstable 
because any small disturbance applied to such a motion would lead to a new 
motion consisting of both amplitude- and phase-modulated waves. 
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5. Concluding remarks 
The method of multiple scales has been used to investigate the second- 

harmonic resonance (two-to-one resonances) in the inberaction of capillary- 
gravity waves with a subsonic air stream. This case corresponds to a wave- 
length of 2.44 em in deep water (Wilton’s ripples). Equations that govern the 
temporal as well as the spatial variation of the amplitudes and phases of the 
two modes of oscillation are presented. Since there is no general solution yet 
available for these equations subject to arbitrary initial conditions, we in- 
vestigated the spatial behaviour of the amplitudes and phases. 

The spatial variation shows that u2,+vug = E (in keeping with the principle 
of conservation of energy), where u1 and u2 are the amplitudes of the two modes, 
E is a constant and Y is a function of the liquid depth and air flow conditions. In  
the absence of the air stream and for an infinite depth, v = 2.8, and hence the 
displacement of the liquid/gas interface is bounded for all distances. The same 
conclusions hold for any positive v. The general motion in this case is an aperiodic 
travelling wave, and the air flow decreases the effectiveness of the second- 
harmonic resonance in rippling the interface. Pure amplitude-modulated waves 
are possible at exact resonance only, and to second order the energy is mono- 
tonically transferred from the fundamental to its first harmonic. Pure phase- 
modulated waves correspond to periodic waves near resonance, in which the 
nonlinear motion adjusts the phases to yield perfect resonance. The effectiveness 
of the resonance in rippling the interface decreases rapidly as the detuning 
increases, and increases as the liquid depth decreases. Note that the present 
theory is invalid for shallow water. 

For certain air flow conditions (an air velocity greater than 6.3m/s at sea 
level), Y is negative and the displacement of the interface may be unbounded 
depending on the relative magnitudes of the initial amplitudes and the detuning. 
At perfect resonance, the interface displacement becomes unbounded with in- 
creasing distance. This conclusion can be checked experimentally in a combina- 
tion wave tank/wind tunnel. 

The author appreciates very much the comments and suggestions of Dr W. S. 
Saric. This work was supported by the Fluid Dynamics Program of the Office 
of Naval Research. 
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